Electromagnetic Fields

Review of Boundary Conditions

Consider an electromagnetic field at the boundary between two
materials with different properties. The tangent and the normal
component of the fields must be examined separately, in order to
understand the effects of the boundary.
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Electromagnetic Fields

Tangential Magnetic Field
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Ampere’s law for the boundary region in the figure can be written as
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Electromagnetic Fields

In terms of finite differences approximation for the derivatives
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If one lets the boundary region shrink, with @ going to zero faster
than b,
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for materials with finite conductivity

— H;» —H; = 0 Tangential components are conserved

for perfect conductors

— th — Hﬂ = lim (J za) =J ¢ (surface current)
a—0
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For a general boundary geometry

ax(Hyq —Hp)=Jg

n = unit vector normal to the surface

In the case of a perfect conductor, the electromagnetic fields go
immediately to zero inside the material, because the conductivity is
infinite and attenuates instantly the fields. The surface current is
confined to an infinitesimally thin “skin”, and it accounts for the
discontinuity of the tangential magnetic field, which becomes
immediately zero inside the perfect conductor.

For a real medium, with finite conductivity, the fields can penetrate
over a certain distance, and there is a current distributed on a thin,
but not infinitesimal, skin layer. The tangential field components on
the two sides of the interface are the same. Nonetheless, the
perfect conductor is often a good approximation for a real metal.
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Tangential Electric Field
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Faraday’s law for the same boundary region can be written as
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Electromagnetic Fields

In terms of finite differences approximation for the derivatives

Enw—Euz3 Eq—Ep
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If one lets the boundary region shrink, with @ going to zero faster
than b,
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= E; —E/4 = 0 Tangential components are conserved

For a general boundary geometry

fix(Eq—Ep)=0
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Normal components
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Consider a small box that encloses a certain area of the interface
with

P = interface charge density
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Electromagnetic Fields

Integrate the divergence of the fields over the volume of the box:

([f v-Dar= [fj pa

Volume Volume

Divergence U theorem

ﬁ) D-fi ds= Flux of D out of the box
Surface

[[| v-Bai=0
Volume

Divergence ‘U theorem

ﬁ) B-fi ds= Flux of B out of the box
Surface
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If the thickness of the box tends to zero and the charge density is
assumed to be uniform over the area, we have the following fluxes

D-Flux out of box = Area- (Dq,, — D,,,) =
= Total intertace charge = Area- pg

B-Flux out of box = Area-(By,, — B5,) =0

The resulting boundary conditions are

Dy, — Dy = 0y By,—By,=0

The discontinuity in the normal component of the displacement
field D is equal to the density of surface charge.

The normal components of the magnetic induction field B are
continuous across the interface.
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Electromagnetic Fields

For isotropic and uniform values of € and | in the two media

D1 =Dy =Ky —&E,n = pg

nl
w1 — By = mH, —ppH,; =0

ool

Even when the interface charge is zero, the normal components of
the electric field are discontinuous at the interface, if there is a
change of dielectric constant .

The normal components of the magnetic field have a similar
discontinuity at the interface due to the change in the magnetic
permeability. In many practical situations, the two media may have
the same permeability as vacuum, Ly, and in such cases the normal
component of the magnetic field is conserved across the interface.
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SUMMARY
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If medium 2 is
perfect conductor

H,,=H), nxHy =Jg
I_:Itz - 0
Eq=Ep E, = 0
Etz - 0
nulHnl = nqunZ Hnl =0
e1E, =k, tos  E,q=pg/6
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Electromagnetic Fields

Examples:
An infinite current sheet generates a plane wave (free space on

both sides)
AX
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J () =—Jg, cos(wt) i lx
Phasor J,=-Jg, i,

The E.M. field is transmitted on both sides of the infinitesimally thin
sheet of current.

© Amanogawa, 2006 — Digital Maestro Series 67



Electromagnetic Fields

BOUNDARY CONDITIONS

ax(Hyq —Hp)=Jg

I_:Itl - ﬁtz = Jsofx

Et1 = Etz

‘Etl‘ =10 ‘ﬁﬂ‘

Symmetry :‘ﬁtl‘z‘ﬁﬂ‘
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Electromagnetic Fields

A semi-infinite perfect conductor medium in contact with free space
has uniform surface current and generates a plane wave
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The E.M. field is zero inside the perfect conductor. The wave is only
transmitted into free space.

© Amanogawa, 2006 — Digital Maestro Series 69



BOUNDARY CONDITIONS

ax(Hyq —Hp)=Jg
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