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Review of Boundary Conditions 
 
Consider an electromagnetic field at the boundary between two 
materials with different properties.  The tangent and the normal 
component of the fields must  be examined separately, in order to 
understand the effects of the boundary. 
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Tangential Magnetic Field 
 
 
 
 
 
 
 
 
 
 
 
 
Ampère’s law for the boundary region in the figure can be written as 
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In terms of finite differences approximation for the derivatives 

 
If one lets the boundary region shrink, with a going to zero faster 
than b, 

 

 

4 3 1 2H H H H En n t t
z zJ j

b a
ω ε− −

− = +

t

t

z

t

t s
a

J a J
for perfect conducto

for materials wi

rs
(sur

th finite co

face cur

nducti

ren

v ty

)

i

t2 1
0

2 1

H H lim

  

( )

H 0

 

H

→
⇒ − = =

⇒ − = Tangential components are conserved

3 4
2 1

0

H HH H lim ( E )n n
t t z z

a
J a j a a

b
ωε

→

−
− = + +



Electromagnetic Fields 

© Amanogawa, 2006 – Digital Maestro Series 59

For a general boundary geometry 
 
 
 
 
 

 
In the case of a perfect conductor, the electromagnetic fields go 
immediately to zero inside the material, because the conductivity is 
infinite and attenuates instantly the fields.  The surface current is 
confined to an infinitesimally thin “skin”, and it accounts for the 
discontinuity of the tangential magnetic field, which becomes 
immediately zero inside the perfect conductor. 
 
For a real medium, with finite conductivity, the fields can penetrate 
over a certain distance, and there is a current distributed on a thin, 
but not infinitesimal, skin layer. The tangential field components on 
the two sides of the interface are the same.  Nonetheless, the 
perfect conductor is often a good approximation for a real metal. 
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Tangential Electric Field 
 
 
 
 
 
 
 
 
 
 
 
 
 
Faraday’s law for the same boundary region can be written as 
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In terms of finite differences approximation for the derivatives 

 
If one lets the boundary region shrink, with a going to zero faster 
than b, 

 
For a general boundary geometry 
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Normal components 
 
 
 
 
 
 
 
 
 
 
 
 
 
Consider a small box that encloses a certain area of the interface 
with 
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Integrate the divergence of the fields over the volume of the box:   
 

VoluVolume

Surface

me
dd

ds

rr

Divergence theorem

Flux of D out of the box

  

D

D n̂

ρ∇ ⋅ =

⇓

⋅ =

∫∫∫

∫

∫

∫

∫∫

Volume

Surface

dr

ds

Divergence theorem

Flux of B out of the box

  

B 0

B n̂

∇⋅ =

⇓

⋅ =

∫∫∫

∫∫



Electromagnetic Fields 

© Amanogawa, 2006 – Digital Maestro Series 64

If the thickness of the box tends to zero and the charge density is 
assumed to be uniform over the area, we have the following fluxes 

 
The resulting boundary conditions are 
 
 
 
 
 
 
The discontinuity in the normal component of the displacement 
field D is equal to the density of surface charge. 
 
The normal components of the magnetic induction field B are 
continuous across the interface.   
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For isotropic and uniform values of ε and µ in the two media 
 
 
 
 
 
 
 
 
Even when the interface charge is zero, the normal components of 
the electric field are discontinuous at the interface, if there is a 
change of dielectric constant . 
 
The normal components of the magnetic field have a similar 
discontinuity at the interface due to the change in the magnetic 
permeability.  In many practical situations, the two media may have 
the same permeability as vacuum, µ0, and in such cases the normal 
component of the magnetic field is conserved across the interface. 
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SUMMARY 
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Examples: 
An infinite current sheet generates a plane wave (free space on 
both sides) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The E.M. field is transmitted on both sides of the infinitesimally thin 
sheet of current. 
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BOUNDARY CONDITIONS 
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A semi-infinite perfect conductor medium in contact with free space 
has uniform surface current and generates a plane wave  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The E.M. field is zero inside the perfect conductor. The wave is only 
transmitted into free space. 

x

y 

+ z - z 
Js 

H 

ˆJ cos( )s so xJ t iω= −

Perfect 
Conductor 

Free Space 



Electromagnetic Fields 

© Amanogawa, 2006 – Digital Maestro Series 70

BOUNDARY CONDITIONS 
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