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Electromagnetic Waves 
 
For fast-varying phenomena, the displacement current cannot be 
neglected, and the full set of Maxwell’s equations must be used 
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The two curl equations are analogous to the coupled (first order) 
equations for voltage and current used in transmission lines.  The 
solutions of this system of equations are waves.  In order to obtain 
uncoupled (second order) equations we can operate with the curl 
once more.  Under the assumption of uniform isotropic medium:  
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From vector calculus, we also have 
 
 
 
 
 
 
 
 
 
 
Finally, we obtain the general wave equations 
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In a region where the wave solution propagates away from charges 
and flowing currents, the wave equations can be simplified 
considerably.  In such conditions, we have 
 

 
and the  wave equations assume the familiar form   
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When currents and charges are involved, the wave equations are 
difficult to solve, because of the terms  
 

 
It is more practical to have equations for the electric potential and 
for the magnetic vector potential, which contain  linear source 
terms dependent on charge and current, as shown below. 
 
We saw earlier that the divergence of the magnetic vector potential 
must be specified.  The simple choice made in magnetostatics of 
zero divergence is not suitable for time-varying fields.  Among the 
possible choices, it is convenient to adopt the Lorenz gauge 
 
 
 Time-varying fields – Lorenz gauge Magnetostatics (d.c.) 
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Starting from the definitions  

 
we obtain again the wave equation by applying the curl operation 
 
 
 
 
 
 
 
With the application of Lorenz gauge 
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For the electric potential we have 

 
After applying the Lorenz gauge once more, we arrive at the 
potential wave equation  
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In engineering it is very important to consider time-harmonic fields 
with a sinusoidal time-variation.  If we assume a steady-state 
situation (after all transients have died out) most physical situations 
may be investigated by considering one single frequency at a time.   
 
This assumption leads to great simplifications in the algebra.  It is 
also realistic, because in practical electromagnetics applications 
we often have a dominant frequency (carrier) to consider. 
  
The time-harmonic fields have the form 
 

 
We can use the complex phasor representation 
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We define 
 
 
 
 
 
 
 
Maxwell’s equations can be rewritten for phasors, with the time-
derivatives transformed into linear terms 
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In phasor form, Maxwell’s equations become 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
where all electromagnetic quantities are phasors and functions only 
of space coordinates. 
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Let’s consider first vacuum as a medium.  The wave equations for 
phasors become Helmholtz equations  
 
 
 
 
 
 
 
 
The general solutions for these differential equations are waves 
moving in 3-D space.  Note, once again, that the two equations are 
uncoupled.   
 
This means that each equation contains all the necessary 
information for the total electromagnetic field and one only needs to 
solve the equation for one field to completely specify the problem.  
The other field is obtained with a curl operation by invoking one of 
the original Maxwell equations. 
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At this stage we assume that a wave exists, and we do not yet 
concern ourselves with the way the wave is generated.  So, for the 
sake of understanding wave behavior, we can restrict the Helmhlotz 
equations to a simple case: 
 
• We assume that the wave solution has an electric field which is 

uniform on the { x , y }-plane and has a reference positive 
orientation along the x-direction.  Then, we verify that this is a 
reasonable choice corresponding to an actual solution of the 
Helmholtz wave equations.  We recall that the Laplacian of a 
scalar is a scalar 

   and that the Laplacian of a vector is a vector 
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The Helmholtz equation becomes: 
 
 
 
 
 
 
Only the x-component of the electric field exists (due to the chosen 
orientation) and only the z-derivative exists, because the field is 
uniform on the { x , y }-plane. 
 
We have now a one-dimensional wave propagation problem 
described by the scalar differential equation 
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This equation has a well known general solution 

 
where the propagation constant is 

The wave that we have assumed is a plane wave and we have 
verified that it is a solution of Helmholtz equation.  The general 
solution above has two possible components 

 
For the simple wave orientation chosen here, the problem is 
mathematically identical to the one solved earlier for voltage 
propagation in a homogeneous transmission line. 
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If a specific electromagnetic wave is established in an infinite 
homogeneous medium, moving for instance along the positive 
direction, only the forward wave should be considered. 
 
A reflected wave exists when a discontinuity takes place along the 
path of the forward wave (that is, the material medium changes 
properties, either abruprtly or gradually). 
 
We can also assume that the amplitude of the forward plane wave 
solution is given and that it is in general a complex constant fixed 
by the conditions that generated the wave 

 

We can write at last the phasor electric field describing a simple 
forward plane wave solution of Helmholtz equation as: 
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The corresponding time-dependent field is obtained by applying the 
inverse phasor transformation 

 
The phasor magnetic field is obtained directly from the Maxwell 
equation for the electric field curl 
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We then develop the curl as  
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The final result for the phasor magnetic field is 
 

 
We define 
 
 
 
 
 

( )

( )

0

0 0
0

0

0 0
0

0 0

ˆH

ˆ

ˆ ˆE

j j z
y y

j j z
y

j j z
y x y

j E e ez i
j

E e e i

E e e i z i

ϕ − β

ϕ − β

ϕ − β

− β
= − =

ωµ

ω µ ε
= =

ω µ

ε ε
= =

µ µ

0
0

0
377 Intrinsic impedance of vacuum

µ
= η ≈ Ω =

ε



Electromagnetic Fields 

© Amanogawa, 2006 – Digital Maestro Series 51

We have found that the fields of the electromagnetic wave are 
perpendicular to each other, and that they are also perpendicular 
(or transverse) to the direction of propagation. 
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Electromagnetic power flows with the wave along the direction of 
propagation and it is also constant on the phase-planes.  The  
power density is described by the time-dependent Poynting vector  
 
 
 
 
 
The Poynting vector is perpendicular to both field components, and 
is parallel to the direction of wave propagation. 
 
When the wave propagates on a general direction, which does not 
coincide with one of the cartesian axes, the propagation constant 
must be considered to be a vector with amplitude  
 

  
 
and direction parallel to the Poynting vector. 
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The condition of mutual orthogonality between the field 
components and the Poynting vector is general and it applies to 
any plane wave with arbitrary direction of propagation.  The mutual 
orientation chosen for the reference directions of the fields follows 
the right hand rule. 
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So far, we have just verified that electromagnetic plane waves are 
possible solutions of the Maxwell equations for time-varying fields. 
One may wonder at this point if plane waves have practical physical 
relevance. 
 
First of all, we should notice that plane waves are mathematically 
analogous to the exponential basis functions used in Fourier 
analysis.  This means that a general wave, with more than one 
frequency component, can always be decomposed in terms of 
plane waves.   
 
• For periodic signals, we have a discrete set of waves which are 

harmonics of the fundamental frequency (analogy with Fourier 
series).   

 
• For general signals, we must consider a continuum of 

frequencies in order to decompose in terms of elementary plane 
waves (analogy with Fourier transform). 
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From a physical point of view, however, the properties of a plane 
wave may be somewhat puzzling.   
 
Assume that a steady-state plane wave is established in an ideal 
infinite homogeneous medium.  On any plane perpendicular to the 
direction of propagation (phase-planes), the electric and magnetic 
fields have uniform magnitude and phase.   
 
The electromagnetic power, flowing with a phase-plane of the wave, 
is obtained by integrating the Poynting vector, which is also 
uniform on each phase-plane.  For a plane where the Poynting 
vector is non-zero, the total power carried by the wave is infinite 
 
 
 
 
 
In many practical cases, we approximate an actual wave with a 
plane wave on a limited region of space, thus considering an 
appropriate finite power. 
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