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Oblique incidence: Interface between dielectric media 
 
Consider a planar interface between two dielectric media.   A plane 
wave is incident at an angle from medium 1. 
 
 The interface plane defines the boundary between the media. 
 The plane of incidence contains the propagation vector and is 
both perpendicular to the interface plane and to the phase planes 
of the wave. 
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There are two elementary orientations (polarizations) for the 
electromagnetic fields: 
 
 Perpendicular Polarization 

The electric field is perpendicular to the plane of incidence and 
the magnetic field is parallel to the plane of incidence.   

The fields are configured as in the Transverse Electric (TE) 
modes.   

 
 Parallel Polarization 

The magnetic field is perpendicular to the plane of incidence 
and the electric field is parallel to the plane of incidence.   

The fields are configured as in the Transverse Magnetic (TM) 
modes.   

 
Any plane wave with general field orientation can be obtained by 
superposition of two waves with perpendicular and parallel 
polarization. 
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Perpendicular (TE) polarization 
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The electric field phasors for the perpendicular polarization, with 
reference to the system of coordinates in the figure, are given by 

 
The propagation vector components in medium 1 are expressed as 
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The propagation vector components in medium 2 are expressed as 

 
The magnetic field components can be obtained as  
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Assuming that the amplitude of the incident electric field is given, 
to completely specify the problem we need to find the amplitude of 
reflected and transmitted electric field. 
 
The boundary condition at the interface (x = 0) states that the 
tangential electric field must be continuous.  Because of the 
perpendicular polarization, the tangential field is also the total field  
 
 
 
 
The relation above must be valid for any choice of “z” and we must 
have (phase conservation law) 

 
The first equality indicates that the reflected angle is the same as 
the incident angle. 
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The second equality provides the transmitted angle 

 
Since we have also 
 
 
 
 
the boundary condition for the electric field becomes 
 
 
 

1 11

2 2
sin sint i

µ ε
θ θ

µ ε
−  

⇒ =   
 

Snell's  Law

i z rz tzj z j z j ze e eβ β β− − −
= =

yi yr ytE E E+ =

1 2sin siniz tz i tβ β β θ β θ= ⇒ =



Electromagnetic Fields 

© Amanogawa, 2006 – Digital Maestro Series 172

The tangential magnetic field must also be continuous at the 
interface.  This applies in our case to the z−components 

 
Solution of the system of boundary equations gives 
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For the magnetic field, we can define the reflection coefficient as 

 
In terms of electric field, the magnetic field components are 

 
The reflection coefficient for the magnetic field is then 
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The transmission coefficient is defined as 

 
The magnetic field components are  

 
The transmission coefficient for the magnetic field is then 
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Parallel (TM) polarization 
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The magnetic field phasors for the parallel polarization are given by 

 
and the electric field components can be obtained as  
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Also for parallel polarization one can verify that the same 
relationships between angles apply, as found earlier for the 
perpendicular polarization, including Snell’s law  
 

 
 
We have again two boundary conditions at the interface. One 
condition is for continuity of the tangential magnetic field 
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A second condition is for continuity of the tangential electric field  

 
From the equations provided by the boundary conditions we obtain 
the reflection and transmission coefficients for the magnetic field of 
a wave with parallel polarization as 
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The reflection coefficient for the electric field is defined as 

 
 
The tangential components of the electric field can be expressed in 
terms of magnetic field as 

 
The reflection coefficient for the electric field is 
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The transmission coefficient for the electric field is defined as 

 
The electric field components are given by 

 
The transmission coefficient for the electric field becomes 
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Considerable simplifications are possible for the common case of 
nonmagnetic dielectric media with 

 
First of all, Snell’s law becomes 

 
or, equivalently 

 
Snell’s law provides then a useful recipe to express the reflection 
and transmission coefficients only with angles, thus eliminating the 
explicit dependence on medium impedance. 
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After some trigonometric manipulations, we obtain the following 
table of simplified coefficients for electric and magnetic field 
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Power flow 
 
The time-average power flow normal to the interface must be 
continuous.  We can express this as 

 
 
 
 
 
 
We define the reflection and transmission coefficients for the time-
average power as 
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The following conversion formulas relate power and electric field 
coefficients 

 
 
Note that reflection and transmission coefficients for the time-
average power are always real positive quantities.  The following 
power conservation condition is always verified 
 

 
Since the power flow normal to the interface is considered, the 
results obtained above apply equally to perpendicular and parallel 
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Non−magnetic perfect dielectric media 

 
 
 
 
 
 
 
 
 
 
 
 
 
From Snell’s law 
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Since θ t < θ i  there is always a transmitted (refracted) beam. 
 

 
The transmission coefficients are always positive 

 
 
⇒ transmitted and incident wave are in phase at the boundary. 
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Perpendicular polarization 
 

 
 The reflection coefficient for the electric field is always negative 

 

 
 The reflection coefficient for the magnetic field is always positive 
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Parallel polarization 
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( )90 taWhen  ni t i tθ θ θ θ+ = ° +⇒ →∞  
 
the reflection coefficients vanish (TOTAL TRANSMISSION) 
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From Snell’s law 
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From Snell’s law 
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For angles of incidence such that  

 
we have for perpendicular polarization 
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For parallel polarization 
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( )90 taWhen  ni t i tθ θ θ θ+ = ° +⇒ →∞  
 
Also in this case the reflection coefficients vanish and we have 
TOTAL TRANSMISSION 
 

 
 
Total transmission occurs again, for parallel polarization only, at 
the Brewster angle 
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When  

 
we have a limit condition for TOTAL REFLECTION, valid for both 
polarizations.  This particular angle of incidence is called  

 
 
 
 
 
 
 
 
 

2 2
1 1

sin sin sin 01 9i t t t
ε εθ θ θ
ε ε

θ⇒ = ⇒ == = °

1 2
1

sini c
εθ θ
ε

−= = critical angle        

90tθ = °

cθ



Electromagnetic Fields 

© Amanogawa, 2006 – Digital Maestro Series 195

For angles of incidence beyond the critical angle 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The negative sign is selected, in order to obtain the proper wave 
vector in medium 2, as shown later. 
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The reflection and transmission coefficients become complex 
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If we consider the coefficients for time-average power flow, we 
have, for both polarizations 
 
 
 
 
 
 
 
This means that incident and reflected waves carry the same time-
average power, and no power is transmitted to medium 2.  But this 
does not mean that the field disappears in medium 2.  The 
instantaneous power that enters medium 2 is eventually reflected 
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The electric field phasor of the transmitted wave has the form 
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The wave vector components are 

 
The field in medium 2 corresponds to a surface wave, moving along 
the z−direction and exponentially decaying (evanescent) along the 
x−direction 
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The surface wave moves parallel to the surface, with a phase 
velocity equal to the apparent phase velocity along z of the incident 
wave in medium 1 

 
For the surface wave, planes of constant amplitude are parallel and 
planes of constant phase are normal to the interface.  These planes 
do not coincide, therefore the surface wave is a nontransverse 
wave. 
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If you consider a beam incident on the interface, it is found that the 
power is totally reflected but after penetrating for some distance 
into medium 2.  The reflected beam emerges displaced by a 
distance D (called Goos-Hänchen shift, discovered in 1947) 
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Examples: 
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water µ µ

ε
ε

ε

=

=

1

1

tan 80 83.6 microwaves

tan 1.8 53.3 optical
B

B

θ

θ

−

−

= ≅ °

= ≅ °

1 2
1

tanB
εθ
ε

−=
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At the Brewster angle 
 

 
Verification with Snell’s law 
 
 

 

90
6.38 microwaves
36.7 optical

i t B t

t

θ θ θ θ

θ

+ = + = °

°
⇒ ≅  °

1 2

1

2

sin sin

6.38 microwavessinsin
36.7 optical

B t

B
t

ε θ ε θ

θθ
ε

−

=

  °
= ≅   ° 
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?Bθ =

Medium 2

o

o

air µ µ

ε ε

=

=

{80 microwaves

Medium 

1.8 optic

1

al

o

o

o

water µ µ

ε
ε

ε

=

=

1 2
1

tanB
εθ
ε

−=

1

1

1tan 6.38 microwaves
80
1tan 36.7 optical

1.8

B

B

θ

θ

−

−

= ≅ °

= ≅ °
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At the Brewster angle 
 

 
Verification with Snell’s law 
 
 

 
 
 

90
83.6 microwaves
53.3 optical

i t B t

t

θ θ θ θ

θ

+ = + = °

°
⇒ ≅  °

1 2

1 2

sin sin

83.6 microwavessinsin
53.3 optical

B t

B
t

o

ε θ ε θ

θ ε
θ

ε
−

=

  °
= ≅   ° 
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The total reflection angle does not exist since 
 

 

?cθ =

Medium 1

o

o

air µ µ

ε ε

=

=

{80 microwaves

Medium 

1.8 optic

2

al

o

o

o

water µ µ

ε
ε

ε

=

=

1 2
1

sinc
εθ
ε

−=

2 1ε ε>
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?cθ =

Medium 2

o

o

air µ µ

ε ε

=

=

{80 microwaves

Medium 

1.8 optic

1

al

o

o

o

water µ µ

ε
ε

ε

=

=

1 2
1

sinc
εθ
ε

−=

1

1

1sin 6.4193 microwaves
80
1sin 48.19 optical

1.8

c

c

θ

θ

−

−

= ≅ °

= ≅ °
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Consider a perpendicularly polarized wave. 
 
 Find the Brewster angle and the critical angle: 

60iθ = °

Medium 2

o

o

air µ µ

ε ε

=

=

Medium 1

4

o

o

µ µ

ε ε

=

=

1 1

1 1

1 1tan tan 26.565
4 2

1 1sin sin 30
4 2

B

c

θ

θ

− −

− −

 = = ≈ ° 
 

 = = = ° 
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 Find the components of the incident propagation vector and of 
the x-component of the transmitted propagation vector in terms 
of  

  

o o oβ ω µ ε=

choose 
" "

1

1

2 2

2 2

2cos 4 cos60
2

3sin 4 sin 60 2 3
2

3

3 2

o
ix i o o o

iz i o o o o

tx t tz t o tz iz o

tx o o o tj j

ββ β θ ω µ ε β

β β θ ω µ ε β β

β β β β β β β β

β β β β α

−

= = ° = =

= = ° = =

= − = = =

= ± − = − = −



Electromagnetic Fields 

© Amanogawa, 2006 – Digital Maestro Series 209

 In the second medium, find the distance at which the field 
strength is 1/e of that at the interface 

 
 What is the value of the magnitude of the reflection coefficient at 
the interface? 

 
The reflection coefficient is a complex quantity when the incident 
angle exceeds the critical angle.  Because of total reflection we 
know that it must be 

  
since the time-average power reflection coefficient is  
 

 

1 1
2t o

d
α β

= =

( ) 1E⊥Γ =

2( ) 1R E⊥= Γ =


