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Transmission Line Equations 
A typical engineering problem involves the transmission of a signal 
from a generator to a load.  A transmission line is the part of the 
circuit that provides the direct link between generator and load. 
Transmission lines can be realized in a number of ways.  Common 
examples are the parallel-wire line and the coaxial cable.  For 
simplicity, we use in most diagrams the parallel-wire line to 
represent circuit connections, but the theory applies to all types of 
transmission lines.  
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Examples of transmission lines 
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If you are only familiar with low frequency circuits, you are used to 
treat all lines connecting the various circuit elements as perfect 
wires, with no voltage drop and no impedance associated to them 
(lumped impedance circuits). This is a reasonable procedure as 
long as the length of the wires is much smaller than the wavelength 
of the signal.  At any given time, the measured voltage and current 
are the same for each location on the same wire.  
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Let’s look at some examples. The electricity supplied to households 
consists of high power sinusoidal signals, with frequency of 60Hz 
or 50Hz, depending on the country.  Assuming that the insulator 
between wires is air (ε ≈ ε0), the wavelength for 60Hz is: 
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which is the about the distance between S. Francisco and Boston!    
Let’s compare to a frequency in the microwave range, for instance 
60 GHz. The wavelength is given by 

8
3

9
2.999 10 5.0 10 5.0

60 10
c m mm
f

−×
λ = = ≈ × =

×
 

which is comparable to the size of a microprocessor chip. 

Which conclusions do you draw? 
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For sufficiently high frequencies the wavelength is comparable with 
the length of conductors in a transmission line. The signal 
propagates as a wave of voltage and current along the line, because 
it cannot change instantaneously at all locations. Therefore, we 
cannot neglect the impedance properties of the wires (distributed 
impedance circuits).  
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Note that the equivalent circuit of a generator consists of an ideal 
alternating voltage generator in series with its actual internal 
impedance.  When the generator is open ( RZ → ∞ ) we have: 

0 iin n GV VI = =    and     

If the generator is connected to a load RZ  
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If the load is a short ( 0RZ = ) 
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The simplest circuit problem that we can study consists of a 
voltage generator connected to a load through a uniform 
transmission line.  In general, the impedance seen by the generator 
is not the same as the impedance of the load, because of the 
presence of the transmission line, except for some very particular 
cases:  
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Our first goal is to determine the equivalent impedance seen by the 
generator, that is, the input impedance of a line terminated by the 
load. Once that is known, standard circuit theory can be used. 
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A uniform transmission line is a “distributed circuit” that we can 
describe as a cascade of identical cells with infinitesimal length.  
The conductors used to realize the line possess a certain series 
inductance and resistance.  In addition, there is a shunt capacitance 
between the conductors, and even a shunt conductance if the 
medium insulating the wires is not perfect. We use the concept of 
shunt conductance, rather than resistance, because it is more 
convenient for adding the parallel elements of the shunt.  We can 
represent the uniform transmission line with the distributed circuit 
below (general lossy line) 
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The impedance parameters L, R, C, and G represent: 

L = series inductance per unit length 
R = series resistance per unit length 
C = shunt capacitance per unit length 
G = shunt conductance per unit length. 

Each cell of the distributed circuit will have impedance elements 
with values: Ldz, Rdz, Cdz, and Gdz, where dz is the infinitesimal 
length of the cells. 
 
If we can determine the differential behavior of an elementary cell of 
the distributed circuit, in terms of voltage and current, we can find a 
global differential equation that describes the entire transmission 
line.  We can do so, because we assume the line to be uniform 
along its length.   
 
So, all we need to do is to study how voltage and current vary in a 
single elementary cell of the distributed circuit. 
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 Loss-less Transmission Line 

 
In many cases, it is possible to neglect resistive effects in the line.  
In this approximation there is no Joule effect loss because only 
reactive elements are present.  The equivalent circuit for the 
elementary cell of a loss-less transmission line is shown in the 
figure below. 
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The series inductance determines the variation of the voltage from 
input to output of the cell, according to the sub-circuit below 
 
 
 
 
 
 
 
 

The corresponding circuit equation is 

( d ) dzV V V j L I+ − = − ω  

which gives a first order differential equation for the voltage 
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The current flowing through the shunt capacitance determines the 
variation of the current from input to output of the cell. 
 
 
 
 
 
 

 
The circuit equation for the sub-circuit above is 

d dz( d ) dz d dzI j C V V j CV j C V= − ω + = − ω − ω  

The second term (including dV dz) tends to zero very rapidly  in the 
limit of infinitesimal length dz leaving a first order differential 
equation for the current 
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We have obtained a system of two coupled first order differential 
equations that describe the behavior of voltage and current on the 
uniform loss-less transmission line.  The equations must be solved 
simultaneously. 
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These are often called “telegraphers’ equations” of the loss-less 
transmission line. 
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One can easily obtain a set of uncoupled equations by 
differentiating with respect to the space coordinate.  The first order 
differential terms are eliminated by using the corresponding  
telegraphers’ equation 
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These are often called “telephonists’ equations”. 
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We have now two uncoupled second order differential equations for 
voltage and current, which give an equivalent description of the 
loss-less transmission line.  Mathematically, these are wave 
equations and can be solved independently.   
 
The general solution for the voltage equation is 
 

z z(z) j jV V e V e+ − β − β= +  
 
 
where the wave propagation constant is 
 

LCβ = ω  
 
 
Note that the complex exponential terms including β have unitary 
magnitude and purely “imaginary” argument, therefore they only 
affect the “phase” of the wave in space.   
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We have the following useful relations: 
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Here, pv fλ =  is the wavelength of the dielectric medium 
surrounding the conductors of the transmission line and  
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is the phase velocity of an electromagnetic wave in the dielectric.   

As you can see, the propagation constant β can be written in many 
different, equivalent ways. 
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The current distribution on the transmission line can be readily 
obtained by differentiation of the result for the voltage  
 

z zd
dz

j jV j V e j V e j L I+ − β − β= − β + β = − ω  

 
which gives 
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The real quantity 
 

0
LZ
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is the “characteristic impedance” of the loss-less transmission line.   
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 Lossy Transmission Line 
 
 
The solution for a uniform lossy transmission line can be obtained 
with a very similar procedure, using the equivalent circuit for the 
elementary cell shown in the figure below. 
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The series impedance determines the variation of the voltage from 
input to output of the cell, according to the sub-circuit  
 
 
 
 
 
 
 
 
 
The corresponding circuit equation is 

( d ) ( dz dz)V V V j L R I+ − = − ω +  

from which we obtain a first order differential equation for the 
voltage 
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The current flowing through the shunt admittance determines the 
input-output variation of the current, according to the sub-circuit  
 
 
 
 
 
 
 

The corresponding circuit equation is 

d ( dz dz)( d )
( ) dz ( )d dz
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The second term (including dV dz) can be ignored, giving a first 
order differential equation for the current 
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dz

I j C G V= − ω +  

C dz G dz V (z)+dV

I (z) I (z)+dI dI



Transmission Lines 

© Amanogawa, 2006 – Digital Maestro Series 60

 
We have again a system of coupled first order differential equations 
that describe the behavior of voltage and current on the lossy 
transmission line  
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These are the “telegraphers’ equations” for the lossy transmission 
line case. 
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One can easily obtain a set of uncoupled equations by 
differentiating with respect to the coordinate z as done earlier 
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These are the “telephonists’ equations” for the lossy line. 
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The telephonists’ equations for the lossy transmission line are 
uncoupled second order differential equations and are again wave 
equations.  The general solution for the voltage equation is 
 

z z z z z z(z) j jV V e V e V e e V e e+ −γ − γ + −α − β − α β= + = +  
 

where the wave propagation constant is now the complex quantity 
 

( )( )j L R j C G jγ = ω + ω + = α + β  
 

The real part α of the propagation constant γ describes the 
attenuation of the signal due to resistive losses.  The imaginary part 
β describes the propagation properties of the signal waves as in 
loss-less lines.   

The exponential terms including α are “real”, therefore, they only 
affect the “magnitude” of the voltage phasor.  The exponential 
terms including β have unitary magnitude and purely “imaginary” 
argument, affecting only the “phase” of the waves in space.   
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The current distribution on a lossy transmission line can be readily 
obtained by differentiation of the result for the voltage  

z zd ( )
dz
V j L R I V e V e+ −γ − γ= − ω + = −γ + γ  

which gives 
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with the “characteristic impedance” of the lossy transmission line    
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ω +
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Note:  the characteristic 
impedance is now complex !
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For both loss-less and lossy transmission lines 
 

the characteristic impedance does not depend on the line length 
 
but only on the metal of the conductors, the dielectric material 
surrounding the conductors and the geometry of the line cross-
section, which determine L, R, C, and G.   
One must be careful not to interpret the characteristic impedance 
as some lumped impedance that can replace the transmission line 
in an equivalent circuit.   

This is a very common mistake! 
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